Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.922
Filtrar
1.
Int J Mol Sci ; 25(2)2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38279296

RESUMO

Exosomal microRNAs (miRNAs) are novel, non-invasive biomarkers for facilitating communication and diagnosing cancer. However, only a few studies have investigated their function and role in the clinical diagnosis of breast cancer. To address this gap, we established a stable cell line, MDA-MB-231-CD63-RFP, and recruited 112 female participants for serum collection. We screened 88 exosomal miRNAs identified through microarray analysis of 231-CD63 and literature screening using real-time PCR; only exosomal miR-92b-5p was significantly increased in patients with breast cancer. It had a significant correlation with stage and discriminated patients from the control with an AUC of 0.787. Exosomal miR-92b-5p impacted the migration, adhesion, and spreading ability of normal human mammary epithelial recipient cells through the downregulation of the actin dynamics regulator MTSS1L. In clinical breast cancer tissue, the expression of MTSS1L was significantly inversely correlated with tissue miR-92b-5p, and high expression of MTSS1L was associated with better 10-year overall survival rates in patients undergoing hormone therapy. In summary, our studies demonstrated that exosomal miR-92b-5p might function as a non-invasive body fluid biomarker for breast cancer detection and provide a novel therapeutic strategy in the axis of miR-92b-5p to MTSS1L for controlling metastasis and improving patient survival.


Assuntos
Biomarcadores , Neoplasias da Mama , Exossomos , MicroRNAs , Feminino , Humanos , Biomarcadores/metabolismo , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Transformação Celular Neoplásica/metabolismo , Exossomos/genética , Exossomos/metabolismo , MicroRNAs/metabolismo , Proteínas de Neoplasias/antagonistas & inibidores
2.
J Med Chem ; 66(4): 2804-2831, 2023 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-36780419

RESUMO

ABCB1 and ABCG2 are the important ATP-binding cassette (ABC) transporters associated with multidrug resistance (MDR). Herein, we designed a series of imidazo[1,2-a]pyridine derivatives as dual-target inhibitors of ABCB1 and ABCG2 through the scaffold hopping strategy. Compound Y22 displayed potential efflux function inhibitory toward both ABCB1 and ABCG2 (reversal fold: ABCB1 = 8.35 and ABCG2 = 2.71) without obvious cytotoxicity. Y22 also enhanced the potency of antiproliferative drugs in vitro. Mechanistic studies demonstrated that Y22 slightly suppressed ATPase activity but did not affect the protein expression of ABCB1 or ABCG2. Notably, Y22 exhibited negligible CYP3A4 inhibition and enhanced the antiproliferative activity of adriamycin in vivo by restoring the sensitivity of resistant cells. Thus, Y22 may be effective clinically in combination with common chemotherapy agents. In summary, Y22 is a potential dual-target inhibitor that reverses MDR by blocking the efflux function of ABCB1 and ABCG2.


Assuntos
Membro 2 da Subfamília B de Transportadores de Cassetes de Ligação de ATP , Antineoplásicos , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Proteínas de Neoplasias , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Piridinas/farmacologia , Membro 2 da Subfamília B de Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Proteínas de Neoplasias/antagonistas & inibidores , Humanos
3.
Proc Natl Acad Sci U S A ; 119(30): e2120339119, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35857873

RESUMO

During translation initiation, eIF4G1 dynamically interacts with eIF4E and eIF1. While the role of eIF4E-eIF4G1 is well established, the regulatory functions of eIF4G1-eIF1 are poorly understood. Here, we report the identification of the eIF4G1-eIF1 inhibitors i14G1-10 and i14G1-12. i14G1s directly bind eIF4G1 and inhibit translation in vitro and in the cell, and their effects on translation are dependent on eIF4G1 levels. Translatome analyses revealed that i14G1s mimic eIF1 and eIF4G1 perturbations on the stringency of start codon selection and the opposing roles of eIF1-eIF4G1 in scanning-dependent and scanning-independent short 5' untranslated region (UTR) translation. Remarkably, i14G1s activate ER/unfolded protein response (UPR) stress-response genes via enhanced ribosome loading, elevated 5'UTR translation at near-cognate AUGs, and unexpected concomitant up-regulation of coding-region translation. These effects are, at least in part, independent of eIF2α-phosphorylation. Interestingly, eIF4G1-eIF1 interaction itself is negatively regulated by ER stress and mTOR inhibition. Thus, i14G1s uncover an unknown mechanism of ER/UPR translational stress response and are valuable research tools and potential drugs against diseases exhibiting dysregulated translation.


Assuntos
Estresse do Retículo Endoplasmático , Fator de Iniciação 2 em Eucariotos , Fator de Iniciação 4G em Eucariotos , Fatores de Iniciação em Eucariotos , Proteínas de Neoplasias , Proteínas do Tecido Nervoso , Resposta a Proteínas não Dobradas , Animais , Códon de Iniciação , Estresse do Retículo Endoplasmático/genética , Fator de Iniciação 2 em Eucariotos/metabolismo , Fator de Iniciação 4G em Eucariotos/antagonistas & inibidores , Fator de Iniciação 4G em Eucariotos/metabolismo , Fatores de Iniciação em Eucariotos/antagonistas & inibidores , Fatores de Iniciação em Eucariotos/metabolismo , Humanos , Camundongos , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/metabolismo , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/metabolismo , Fosforilação , Biossíntese de Proteínas , Resposta a Proteínas não Dobradas/genética
4.
J Med Chem ; 65(10): 7231-7245, 2022 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-35522528

RESUMO

MAGE proteins are cancer testis antigens (CTAs) that are characterized by highly conserved MAGE homology domains (MHDs) and are increasingly being found to play pivotal roles in promoting aggressive cancer types. MAGE-A4, in particular, increases DNA damage tolerance and chemoresistance in a variety of cancers by stabilizing the E3-ligase RAD18 and promoting trans-lesion synthesis (TLS). Inhibition of the MAGE-A4:RAD18 axis could sensitize cancer cells to chemotherapeutics like platinating agents. We use an mRNA display of thioether cyclized peptides to identify a series of potent and highly selective macrocyclic inhibitors of the MAGE-A4:RAD18 interaction. Co-crystal structure indicates that these inhibitors bind in a pocket that is conserved across MHDs but take advantage of A4-specific residues to achieve high isoform selectivity. Cumulatively, our data represent the first reported inhibitor of the MAGE-A4:RAD18 interaction and establish biochemical tools and structural insights for the future development of MAGE-A4-targeted cellular probes.


Assuntos
Antígenos de Neoplasias , Proteínas de Neoplasias , Neoplasias , Antígenos de Neoplasias/química , Dano ao DNA , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Humanos , Masculino , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/química , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Peptídeos Cíclicos/química , Peptídeos Cíclicos/farmacologia , Relação Estrutura-Atividade , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
5.
Eur J Med Chem ; 237: 114346, 2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35483322

RESUMO

The primary source of failure of cancer therapies is multidrug resistance (MDR), which can be caused by different mechanisms, including the overexpression of ABC transporters in cancer cells. Among the 48 human ABC proteins, the breast cancer resistance protein (BCRP/ABCG2) has been described as a pivotal player in cancer resistance. The use of functional inhibitors and expression modulators is a promising strategy to overcome the MDR caused by ABCG2. Despite the lack of clinical trials using ABCG2 inhibitors, many compounds have already been discovered. This review presents an overview about various ABCG2 inhibitors that have been identified, discussing some chemical aspects and the main experimental methods used to identify and characterize the mechanisms of new inhibitors. In addition, some biological requirements to pursue preclinical tests are described. Finally, we discuss the potential use of ABCG2 inhibitors in cancer stem cells (CSC) for improving the objective response rate and the mechanism of ABCG2 modulators at transcriptional and protein expression levels.


Assuntos
Antineoplásicos , Neoplasias da Mama , Proteínas de Neoplasias , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Antineoplásicos/química , Antineoplásicos/farmacologia , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Feminino , Humanos , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/metabolismo , Células-Tronco Neoplásicas/efeitos dos fármacos
6.
J Ethnopharmacol ; 289: 115061, 2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35114342

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Flos Magnoliae (the dried flower buds of Magnolia biondii Pamp, FM) is a known herbal traditional medicine used for the symptomatic relief of nasal congestion and rhinorrhea caused by rhinitis and sinusitis. Magnolol, a neolignan from the magnolia family, is a secondary metabolite known to have anti-allergic and anti-inflammatory effects. However, the underlying mechanisms and therapeutic effect of magnolol in the treatment of allergic rhinitis (AR) remain elusive. AIMS OF THE STUDY: Anoctamin 1 (ANO1), a calcium-activated anion channel, mediates mucus and electrolyte secretion in nasal airway epithelial cells, whereas calcium release-activated calcium channel protein 1 (ORAI1) participates in the activation of T-lymphocytes and mast cells. The aim of our study is to understand the mechanisms of action of magnolol against AR, i.e., whether it acts through the modulation of ANO1 and ORAI1 channels that are expressed in nasal epithelial cells and T-lymphocytes, respectively. MATERIALS AND METHODS: Whole-cell patch clamp was used to record the activity of ORAI1 and ANO1 ion channels in ORAI1 or ANO1 overexpressed HEK293T cells, while the Ussing chamber apparatus was used to measure electrolyte transport via the epithelium, in Calu-3 cells cultured in an air-liquid interface. Additionally, calcium imaging of Jurkat T-lymphocytes was used to assess changes in the intracellular calcium concentration. Magnolol toxicity was assessed using the CCK-8 assay, and its effect on T-lymphocyte proliferation was measured by labeling human primary T-lymphocytes with carboxyfluorescein succinimidyl ester. Finally, OVA-induced Balb/c mice were employed to evaluate the effect of magnolol on nasal symptoms, as well as cytokine and eosinophil infiltration in AR. RESULTS: Magnolol inhibits ORAI1 and ANO1 channels in a concentration-dependent manner. Magnolol (30 µM) inhibits anti-CD3 induced cellular proliferation and production of IL-2 via ORAI1 channels in T-lymphocytes. Further, ATP-induced electrolyte transport mediated by ANO1 channels is significantly inhibited by magnolol in IL-4 sensitized Calu-3 cells. Notably, 300 µM magnolol significantly attenuates cytokine and eosinophil infiltration, thus alleviating AR symptoms in mice OVA-induced AR. CONCLUSION: Magnolol may be a promising therapeutic agent for the treatment and prevention of AR.


Assuntos
Antialérgicos/farmacologia , Compostos de Bifenilo/farmacologia , Lignanas/farmacologia , Magnolia/química , Rinite Alérgica/tratamento farmacológico , Animais , Anoctamina-1/antagonistas & inibidores , Antialérgicos/administração & dosagem , Antialérgicos/isolamento & purificação , Compostos de Bifenilo/administração & dosagem , Compostos de Bifenilo/isolamento & purificação , Linhagem Celular Tumoral , Citocinas/metabolismo , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Feminino , Flores , Células HEK293 , Humanos , Lignanas/administração & dosagem , Lignanas/isolamento & purificação , Camundongos , Camundongos Endogâmicos BALB C , Proteínas de Neoplasias/antagonistas & inibidores , Proteína ORAI1/antagonistas & inibidores , Ovalbumina , Técnicas de Patch-Clamp
7.
J Adv Res ; 36: 147-161, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35127170

RESUMO

Introduction: Globally, hepatocellular carcinoma (HCC) is the sixth most common malignancy and it has the fourth highest mortality. MicroRNAs play a significant part in biological processes in cell formation and advancement by targeting genes in many cancers including HCC. Objective: In the present study we examine the involvement of miR-4521 and FAM129A correlations in HCC occurrence and progression. Methods: Expression levels of miR-4521 and FAM129A in HCC tissues and cells were detected. Immunohistochemistry was carried out to detect expression of FAM129A, MMP9 and TIMP-1 in HCC tissues. Western blot assays were used to examine expression levels of different genes involve in signaling pathways. Transwell chamber, MTT and wound healing assays were performed to check cell migration, invasion and proliferation rates. Results: Overexpression of FAM129A positively correlated with upregulation of MMP9 and negatively correlated with TIMP-1 in HCC patient samples, which encouraged progression and metastasis of HCC. An antagonistic relation between miR-4521 and FAM129A was detected in current study, down-regulation of miR-4521 and up-regulation of FAM129A was demonstrated in HCC tissues and cell lines as compare to normal tissue samples and the normal cell line LO2. Overexpressing miR-4521 and silencing FAM129A impaired HCC cell migratory and invasive properties and suppressed cell proliferation. Mutually, miR-4521-FAM129A axial regulation inhibited in vitro proliferation of cells by promoting apoptosis through the p-FAK/p-AKT/MDM2/P53 and p-FAK/p-AKT/BCL-2/BAX/Cytochrome-C/Caspase-3/Caspase-9 pathways, respectively, and suppressed the migration and invasion capabilities of HCCLM3 and HepG2 cells via the TIMP-1/MMP9/MMP2 and p-FAK/p-AKT pathway. Conclusion: Our work found the axial regulation mechanism of miR-4521-FAM129A in HCC. Deficiency of miR-4521 and abundance of FAM129A synergistically enhanced cancer progression by increasing cell proliferation and malignant invasion and by inhibiting apoptosis. These discoveries suggest that miR-4521/FAM129A might play a vital role in hepatic cancer progression and could be a candidate for its therapy.


Assuntos
Biomarcadores Tumorais/antagonistas & inibidores , Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , Proteínas de Neoplasias/antagonistas & inibidores , Biomarcadores Tumorais/metabolismo , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Hepáticas/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Invasividade Neoplásica/genética , Proteínas de Neoplasias/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/genética
8.
Int J Mol Sci ; 23(3)2022 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-35163586

RESUMO

Triple-negative breast cancer (TNBC) is associated with high recurrence rates, high incidence of distant metastases, and poor overall survival (OS). Taxane and anthracycline-containing chemotherapy (CT) is currently the main systemic treatment option for TNBC, while platinum-based chemotherapy showed promising results in the neoadjuvant and metastatic settings. An early arising of intrinsic or acquired CT resistance is common and represents the main hurdle for successful TNBC treatment. Numerous mechanisms were uncovered that can lead to the development of chemoresistance. These include cancer stem cells (CSCs) induction after neoadjuvant chemotherapy (NACT), ATP-binding cassette (ABC) transporters, hypoxia and avoidance of apoptosis, single factors such as tyrosine kinase receptors (EGFR, IGFR1), a disintegrin and metalloproteinase 10 (ADAM10), and a few pathological molecular pathways. Some biomarkers capable of predicting resistance to specific chemotherapeutic agents were identified and are expected to be validated in future studies for a more accurate selection of drugs to be employed and for a more tailored approach, both in neoadjuvant and advanced settings. Recently, based on specific biomarkers, some therapies were tailored to TNBC subsets and became available in clinical practice: olaparib and talazoparib for BRCA1/2 germline mutation carriers larotrectinib and entrectinib for neurotrophic tropomyosin receptor kinase (NTRK) gene fusion carriers, and anti-trophoblast cell surface antigen 2 (Trop2) antibody drug conjugate therapy for heavily pretreated metastatic TNBC (mTNBC). Further therapies targeting some pathologic molecular pathways, apoptosis, miRNAS, epidermal growth factor receptor (EGFR), insulin growth factor 1 receptor (IGF-1R), and androgen receptor (AR) are under investigation. Among them, phosphatidylinositol 3 kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) and EGFR inhibitors as well as antiandrogens showed promising results and are under evaluation in Phase II/III clinical trials. Emerging therapies allow to select specific antiblastics that alone or by integrating the conventional therapeutic approach may overcome/hinder chemoresistance.


Assuntos
Antineoplásicos/uso terapêutico , Biomarcadores Tumorais , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Proteínas de Neoplasias , Neoplasias de Mama Triplo Negativas , Biomarcadores Tumorais/antagonistas & inibidores , Biomarcadores Tumorais/metabolismo , Feminino , Humanos , Metástase Neoplásica , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/metabolismo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/mortalidade , Neoplasias de Mama Triplo Negativas/patologia
9.
Mol Cell Biochem ; 477(4): 1261-1279, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35129779

RESUMO

Imatinib, nilotinib, dasatinib, bosutinib, ponatinib, and asciminib are FDA-approved tyrosine kinase inhibitors (TKIs) for chronic myeloid leukemia (CML), each of which has a specific pharmacological profile. Asciminib has been recently (2021) approved for patients resistant to former TKIs, and because the binding site of this drug (the myristoyl pocket in the ABL1 kinase) is different from that of other TKIs (ATP-binding sites), it is, therefore, effective against T315I mutation of BCR-ABL oncoprotein. All TKIs have a different pharmacological profile due to different chemical structures. Imatinib is the only TKI whose absorption depends on both influx (OCT1 and OATP1A2) and efflux (ABCB1 and ABCG2) transporters, whereas the others rely only on efflux transporters. The efflux of dasatinib is also regulated by ABCC4 and ABCC6 transporters. Nilotinib and ponatinib are transported passively, as no role of transporters has been found in their case. A phenomenon common to all in the metabolic aspect is that the CYP3A4 isoform of CYP450 primarily metabolizes TKIs. Not only does CYP3A4, flavin-containing monooxygenase 3 (FMO3), and uridine 5'-diphospho-glucuronosyltransferase (UGT) also metabolize dasatinib, and similarly, by glucuronidation process, asciminib gets metabolized by UGT enzymes (UGT1A3, UGT1A4, UGT2B7, and UGT2B17). Additionally, the side effects of TKIs are categorized as hematological (thrombocytopenia, neutropenia, anemia, and cardiac dysfunction) and non-hematological (diarrhea, nausea, vomiting, pleural effusion, and skin rash). However, few toxicities are drug-specific, like degradation of biomolecules by ponatinib-glutathione (P-GSH) conjugates and clinical pancreatitis (dose-limited toxicity and manageable by dosage alterations) are related to ponatinib and asciminib, respectively. This review focuses on the pharmacokinetics of approved TKIs related to CML therapy to comprehend their specificity, tolerability, and off-target effects, which could help clinicians to make a patient-specific selection of CML drugs by considering concomitant diseases and risk factors to the patients.


Assuntos
Antineoplásicos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Leucemia Mielogênica Crônica BCR-ABL Positiva , Proteínas de Neoplasias , Inibidores de Proteínas Quinases , Antineoplásicos/farmacocinética , Antineoplásicos/uso terapêutico , Humanos , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/enzimologia , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/metabolismo , Inibidores de Proteínas Quinases/farmacocinética , Inibidores de Proteínas Quinases/uso terapêutico
10.
Molecules ; 27(4)2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35208952

RESUMO

For most researchers, discovering new anticancer drugs to avoid the adverse effects of current ones, to improve therapeutic benefits and to reduce resistance is essential. Because the COX-2 enzyme plays an important role in various types of cancer leading to malignancy enhancement, inhibition of apoptosis, and tumor-cell metastasis, an indispensable objective is to design new scaffolds or drugs that possess combined action or dual effect, such as kinase and COX-2 inhibition. The start compounds A1 to A6 were prepared through the diazo coupling of 3-aminoacetophenone with a corresponding phenol and then condensed with two new chalcone series, C7-18. The newly synthesized compounds were assessed against both COX-2 and epidermal growth factor receptor (EGFR) for their inhibitory effect. All novel compounds were screened for cytotoxicity against five cancer cell lines. Compounds C9 and G10 exhibited potent EGFR inhibition with IC50 values of 0.8 and 1.1 µM, respectively. Additionally, they also displayed great COX-2 inhibition with IC50 values of 1.27 and 1.88 µM, respectively. Furthermore, the target compounds were assessed for their cytotoxicity against pancreatic ductal cancer (Panc-1), lung cancer (H-460), human colon cancer (HT-29), human malignant melanoma (A375) and pancreatic cancer (PaCa-2) cell lines. Interestingly, compounds C10 and G12 exhibited the strongest cytotoxic effect against PaCa-2 with average IC50 values of 0.9 and 0.8 µM, respectively. To understand the possible binding modes of the compounds under investigation with the receptor cites of EGFR and COX-2, a virtual docking study was conducted.


Assuntos
Antineoplásicos , Chalconas , Inibidores de Ciclo-Oxigenase 2 , Proteínas de Neoplasias , Neoplasias , Inibidores de Proteínas Quinases , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Chalconas/síntese química , Chalconas/química , Chalconas/farmacologia , Inibidores de Ciclo-Oxigenase 2/síntese química , Inibidores de Ciclo-Oxigenase 2/química , Inibidores de Ciclo-Oxigenase 2/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Receptores ErbB/antagonistas & inibidores , Humanos , Estrutura Molecular , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/enzimologia , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia
11.
Blood ; 139(8): 1160-1176, 2022 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-35201323

RESUMO

Anti-CD38 monoclonal antibodies (mAbs) represent a breakthrough in the treatment of multiple myeloma (MM), yet some patients fail to respond or progress quickly with this therapy, highlighting the need for novel approaches. In this study we compared the preclinical efficacy of SAR442085, a next-generation anti-CD38 mAb with enhanced affinity for activating Fcγ receptors (FcγR), with first-generation anti-CD38 mAb daratumumab and isatuximab. In surface plasmon resonance and cellular binding assays, we found that SAR442085 had higher binding affinity than daratumumab and isatuximab for FcγRIIa (CD32a) and FcγRIIIa (CD16a). SAR442085 also exhibited better in vitro antibody-dependent cellular cytotoxicity (ADCC) against a panel of MM cells expressing variable CD38 receptor densities including MM patients' primary plasma cells. The enhanced ADCC of SAR442085 was confirmed using NK-92 cells bearing low and high affinity FcγRIIIa (CD16a)-158F/V variants. Using MM patients' primary bone marrow cells, we confirmed that SAR442085 had an increased ability to engage FcγRIIIa, resulting in higher natural killer (NK) cell activation and degranulation against primary plasma cells than preexisting Fc wild-type anti-CD38 mAbs. Finally, using huFcgR transgenic mice that express human Fcγ receptors under the control of their human regulatory elements, we demonstrated that SAR442085 had higher NK cell-dependent in vivo antitumor efficacy and better survival than daratumumab and isatuximab against EL4 thymoma or VK*MYC myeloma cells overexpressing human CD38. These results highlight the preclinical efficacy of SAR442085 and support the current evaluation of this next-generation anti-CD38 antibody in phase I clinical development in patients with relapsed/refractory MM.


Assuntos
ADP-Ribosil Ciclase 1/antagonistas & inibidores , Antineoplásicos Imunológicos/farmacologia , Células da Medula Óssea , Glicoproteínas de Membrana/antagonistas & inibidores , Mieloma Múltiplo , Proteínas de Neoplasias/antagonistas & inibidores , ADP-Ribosil Ciclase 1/metabolismo , Animais , Células da Medula Óssea/metabolismo , Células da Medula Óssea/patologia , Linhagem Celular Tumoral , Células HEK293 , Humanos , Glicoproteínas de Membrana/metabolismo , Camundongos Transgênicos , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/metabolismo , Mieloma Múltiplo/patologia , Proteínas de Neoplasias/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Anticancer Res ; 42(2): 723-730, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35093870

RESUMO

BACKGROUND/AIM: Over-expression of both P-glycoprotein (P-gp) and Breast Cancer Resistance Protein (BCRP) has been associated with multidrug-resistance in glioblastoma (GBM). Though previously studied broad-spectrum inhibitors of drug efflux pumps have failed to progress in clinical studies due to in vivo toxicity, research into clinically viable targeted inhibitors is needed. This study evaluated the effects of Ko143, a non-toxic analog of fumitremorgin C, on temozolomide (TMZ) efficacy in resistant glioblastoma stem cells. MATERIALS AND METHODS: We used ATP-Glo assay to determine cell viabilities and flow cytometry to perform cell cycle analysis. Comparative gene expression was analysed through RT-qPCR. RESULTS: TMZ IC50 decreased 41.07% (p<0.01) in the resistant phenotype when delivered in combination with Ko143. Additionally, the TMZ-resistant phenotype (GBM146) displayed 44-fold greater P-gp expression than the TMZ-sensitive phenotype (GBM9) (p<0.01), yet a 0.6-fold lower BCRP expression. Ko143 potentiates TMZ efficacy and likely inhibits P-glycoprotein more potently than previously indicated. CONCLUSION: Further development of non-toxic, targeted inhibitors of drug efflux pumps for use in combinatorial chemotherapy may improve glioblastoma patient prognosis.


Assuntos
Dicetopiperazinas/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Glioblastoma/tratamento farmacológico , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Temozolomida/farmacologia , Subfamília B de Transportador de Cassetes de Ligação de ATP/antagonistas & inibidores , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Sinergismo Farmacológico , Glioblastoma/genética , Glioblastoma/patologia , Humanos , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética
13.
Sci Rep ; 12(1): 1437, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-35082323

RESUMO

Control theory has seen recently impactful applications in network science, especially in connections with applications in network medicine. A key topic of research is that of finding minimal external interventions that offer control over the dynamics of a given network, a problem known as network controllability. We propose in this article a new solution for this problem based on genetic algorithms. We tailor our solution for applications in computational drug repurposing, seeking to maximize its use of FDA-approved drug targets in a given disease-specific protein-protein interaction network. We demonstrate our algorithm on several cancer networks and on several random networks with their edges distributed according to the Erdos-Rényi, the Scale-Free, and the Small World properties. Overall, we show that our new algorithm is more efficient in identifying relevant drug targets in a disease network, advancing the computational solutions needed for new therapeutic and drug repurposing approaches.


Assuntos
Algoritmos , Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Reposicionamento de Medicamentos/métodos , Proteínas de Neoplasias/genética , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Biologia Computacional/métodos , Feminino , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes/efeitos dos fármacos , Humanos , Terapia de Alvo Molecular , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/metabolismo , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Medicamentos sob Prescrição/uso terapêutico , Mapas de Interação de Proteínas/efeitos dos fármacos
14.
Bioengineered ; 13(2): 3262-3274, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35067164

RESUMO

It reported that heat generated by near-infrared laser irradiation of gold nanorods (AuNRs) effectively inhibited tumor cells, and the conjugate of epidermal growth factor receptor monoclonal antibody (EGFRmAb) and gold nanorods could selectively binded to the surface of cancer cell membrane expressing EGFR. However, there are few research reports on EGFRmAb-AuNRs in laryngeal squamous cell carcinoma. Therefore, our study aimed to investigate the photothermal effect of EGFRmAb modified AuNRs in inducing tumor cell death in an animal model of laryngeal squamous cell carcinoma. We showed that the conjugates of EGFRmAb and AuNRs selectively entered laryngeal squamous cell carcinoma cells. We analyzed the parameters of laser irradiation by controlling the near-infrared to optimize the condition and procedure of targeted treatment in nude mice treated with EGFRmAb and AuNRs. In addition, we examined the safety of the combined therapy. Test results showed that EGFRmAb-AuNRs inhibited the growth of Hep-2 and CNE-2 cells but not normal epithelial cells, and the semi-inhibitor concentration of EGFRmAb in Hep-2 and CNE-2 cells was 4 pmol/ml and 2 pmol/ml, respectively. AuNRs injected into the tumor and irradiated by near-infrared laser effectively inhibited tumor growth in nude mice without toxic effect in mice. We further confirmed that the apoptosis and necrosis rates of tumor cells in mice were highest under 3 W/cm2 near-infrared laser irradiation and AuNRs minimum concentration of 280 µg/kg. In conclusion, we developed a new method of targeting EGFRmAb combined with AuNRs to achieve photothermal effect in the treatment of laryngeal squamous cell carcinoma.


Assuntos
Antineoplásicos Imunológicos , Ouro , Neoplasias de Cabeça e Pescoço , Nanopartículas Metálicas , Nanotubos/química , Proteínas de Neoplasias/antagonistas & inibidores , Terapia Fototérmica , Carcinoma de Células Escamosas de Cabeça e Pescoço , Animais , Antineoplásicos Imunológicos/química , Antineoplásicos Imunológicos/farmacologia , Linhagem Celular Tumoral , Receptores ErbB/antagonistas & inibidores , Feminino , Ouro/química , Ouro/farmacologia , Neoplasias de Cabeça e Pescoço/metabolismo , Neoplasias de Cabeça e Pescoço/terapia , Humanos , Nanopartículas Metálicas/química , Nanopartículas Metálicas/uso terapêutico , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/terapia , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Mol Cell Biochem ; 477(3): 759-769, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35037144

RESUMO

Targeted therapy has gradually become the first-line clinical tumor therapy due to its high specificity and low rate of side effects. TOPK (T-LAK cell-originated protein kinase), a MAP kinase, is highly expressed in various tumor tissues, while it is rarely expressed in normal tissues, with the exceptions of testicular germ cells and some fetal tissues. It can promote cancer cell proliferation and migration and is also related to drug resistance. Therefore, TOPK is considered a good therapeutic target. Moreover, a number of studies have shown that targeting TOPK can inhibit the proliferation of cancer cells and promote their apoptosis. Here, we discussed the biological functions of TOPK in cancer and summarized its tumor-related signaling network and known TOPK inhibitors. Finally, the role of TOPK in targeted cancer therapy was concluded, and future research directions for TOPK were assessed.


Assuntos
Sistemas de Liberação de Medicamentos , Quinases de Proteína Quinase Ativadas por Mitógeno , Proteínas de Neoplasias , Neoplasias , Inibidores de Proteínas Quinases/uso terapêutico , Animais , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Humanos , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/enzimologia , Transdução de Sinais/efeitos dos fármacos
16.
J Mol Biol ; 434(5): 167436, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-34990652

RESUMO

An attractive approach to treat people with Cystic Fibrosis (CF), a life-shortening disease caused by mutant CFTR, is to compensate for the absence of this chloride/bicarbonate channel by activating alternative (non-CFTR) chloride channels. One obvious target for such "mutation-agnostic" therapeutic approach is TMEM16A (anoctamin-1/ANO1), a calcium-activated chloride channel (CaCC) which is also expressed in the airways of people with CF, albeit at low levels. To find novel TMEM16A regulators of both traffic and function, with the main goal of identifying candidate CF drug targets, we performed a fluorescence cell-based high-throughput siRNA microscopy screen for TMEM16A trafficking using a double-tagged construct expressed in human airway cells. About 700 genes were screened (2 siRNAs per gene) of which 262 were identified as candidate TMEM16A modulators (179 siRNAs enhanced and 83 decreased TMEM16A traffic), being G-protein coupled receptors (GPCRs) enriched on the primary hit list. Among the 179 TMEM16A traffic enhancer siRNAs subjected to secondary screening 20 were functionally validated. Further hit validation revealed that siRNAs targeting two GPCRs - ADRA2C and CXCR3 - increased TMEM16A-mediated chloride secretion in human airway cells, while their overexpression strongly diminished calcium-activated chloride currents in the same cell model. The knockdown, and likely also the inhibition, of these two TMEM16A modulators is therefore an attractive potential therapeutic strategy to increase chloride secretion in CF.


Assuntos
Anoctamina-1 , Fibrose Cística , Proteínas de Neoplasias , Anoctamina-1/antagonistas & inibidores , Anoctamina-1/genética , Cálcio/metabolismo , Fibrose Cística/tratamento farmacológico , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Técnicas de Silenciamento de Genes , Humanos , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , RNA Interferente Pequeno/genética
17.
Recent Pat Anticancer Drug Discov ; 17(4): 387-395, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35023460

RESUMO

BACKGROUND: Therapeutic resistance is a frequent problem of cancer treatment and a leading cause of mortality in patients with metastatic colorectal cancer (CRC). Recent insight into the mechanisms that confer multidrug resistance has elucidated that the ATP-binding cassette (ABC) superfamily G member 2 (ABCG2) assists cancer cells in escaping therapeutic stress caused by toxic chemotherapy. Therefore, it is necessary to develop ABCG2 inhibitors. OBJECTIVES: In the present study, we investigated the inhibitory effect of KU55933 on ABCG2 in CRC. METHODS: The cytotoxicity assay and drug accumulation assay were used to examine the inhibitory effect of KU55933 on ABCG2. The protein expressions were detected by Western blot assay. The docking assay was performed to predict the binding site and intermolecular interactions between KU55933 and ABCG2. RESULTS: KU55933 was more potent than the known ABCG2 inhibitor fumitremorgin C to enhance the sensitivity of mitoxantrone and doxorubicin and the intracellular accumulation of mitoxantrone, doxorubicin and rhodamine 123 inside CRC cells with ABCG2 overexpression. Moreover, KU55933 did not affect the protein level of ABCG2. Furthermore, the docking data showed that KU55933 was tightly located in the drug-binding pocket of ABCG2. CONCLUSION: In summary, our data presented that KU55933 could effectively inhibit the drug pump activity of ABCG2 in colorectal cancer, which is further supported by the predicted model that showed the hydrophobic interactions of KU55933 within the drug-binding pocket of ABCG2. KU55933 can potently inhibit the activity of ABCG2 in CRC.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Antineoplásicos , Neoplasias Colorretais , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Doxorrubicina/farmacologia , Resistencia a Medicamentos Antineoplásicos , Humanos , Mitoxantrona/farmacologia , Morfolinas/farmacocinética , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Pironas/farmacologia
18.
Toxicol Appl Pharmacol ; 436: 115883, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35031325

RESUMO

The occurrence of multidrug resistance (MDR) is one of the impediments in the clinical treatment of breast cancer, and MDR breast cancer has abnormally high breast cancer resistance protein (BCRP/ABCG2) expression. However, there are currently no clinical drugs that inhibit this target. Our previous study found that 2-Methoxy-5((3,4,5-trimethosyphenyl)seleninyl) phenol (SQ0814061/SQ), a small molecule drug with low toxicity to normal tissues, could target microtubules, inhibit the proliferation of breast cancer, and reduce its migration and invasion abilities. However, the effect and the underlying mechanism of SQ on MDR breast cancers are still unknown. Therefore, in this study, we investigated the effect of SQ on adriamycin-resistant MCF-7 (MCF-7/ADR) cells and explored the underlying mechanism. The MTT assay showed that SQ had potent cytotoxicity to MCF-7/ADR cells. In particular, the results of western blot and flow cytometry proved that SQ could effectively inhibit the expression of BCRP in MCF-7/ADR cells to decrease its drug delivery activity. In addition, SQ could block the cell cycle at G2/M phase in parental and MCF-7/ADR cells, thereby mediating cell apoptosis, which was related with the inhibition of PI3K-Akt-MDM2 pathway. Taken together, our findings indicate that SQ overcomes multidrug resistance in MCF-7/ADR cells by inhibiting BCRP function and mediating apoptosis through PI3K-Akt-MDM2 pathway inhibition.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Apoptose/efeitos dos fármacos , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Microtúbulos/efeitos dos fármacos , Proteínas de Neoplasias/antagonistas & inibidores , Compostos Organosselênicos/farmacologia , Moduladores de Tubulina/antagonistas & inibidores , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Células MCF-7 , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos
19.
Int J Mol Sci ; 24(1)2022 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-36614168

RESUMO

Different molecular mechanisms contribute to the development of multidrug resistance in cancer, including increased drug efflux, enhanced cellular repair mechanisms and alterations of drug metabolism or drug targets. ABCG2 is a member of the ATP-binding cassette superfamily transporters that promotes drug efflux, inducing chemotherapeutic resistance in malignant cells. In this context, the development of selective ABCG2 inhibitors might be a suitable strategy to improve chemotherapy efficacy. Thus, through a multidisciplinary approach, we identified a new ABCG2 selective inhibitor (8), highlighting its ability to increase mitoxantrone cytotoxicity in both hepatocellular carcinoma (EC50from 8.67 ± 2.65 to 1.25 ± 0.80 µM) and transfected breast cancer cell lines (EC50from 9.92 ± 2.32 to 2.45 ± 1.40 µM). Moreover, mitoxantrone co-administration in both transfected and non-transfected HEK293 revealed that compound 8 notably lowered the mitoxantrone EC50, demonstrating its efficacy along with the importance of the ABCG2 extrusion pump overexpression in MDR reversion. These results were corroborated by evaluating the effect of inhibitor 8 on mitoxantrone cell uptake in multicellular tumor spheroids and via proteomic experiments.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Antineoplásicos , Neoplasias , Humanos , Antineoplásicos/química , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Células HEK293 , Mitoxantrona/farmacologia , Proteínas de Neoplasias/antagonistas & inibidores , Proteômica
20.
Life Sci ; 289: 120192, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34871664

RESUMO

AIMS: The number of cancer survivors with cardiovascular disease is increasing. However, the effect of cancer on body fluid regulation remains to be clarified. In this study, we evaluated body osmolyte and water imbalance in rats with hepatocellular carcinoma. MAIN METHODS: Wistar rats were administered diethylnitrosamine, a carcinogenic drug, to establish liver cancer. We analyzed tissue osmolyte and water content, and their associations with aldosterone secretion. KEY FINDINGS: Hepatocellular carcinoma rats had significantly reduced body mass and the amount of total body sodium, potassium, and water. However, these rats had significantly increased relative tissue sodium, potassium, and water content per tissue dry weight. Furthermore, these changes in sodium and water balance in hepatocellular carcinoma rats were significantly associated with increased 24-h urinary aldosterone excretion. Supplementation with 0.25% salt in drinking water improved body weight reduction associated with sodium and water retention in hepatocellular carcinoma rats, which was suppressed by treatment with spironolactone, a mineralocorticoid receptor antagonist. Additionally, the urea-driven water conservation system was activated in hepatocellular carcinoma rats. SIGNIFICANCE: These findings suggest that hepatocellular carcinoma induces body mass loss in parallel with activation of the water conservation system including aldosterone secretion and urea accumulation to retain osmolyte and water. The osmolyte and water retention at the tissue level may be a causative factor for ascites and edema formation in liver failure rats.


Assuntos
Aldosterona/urina , Carcinoma Hepatocelular/urina , Dietilnitrosamina/toxicidade , Neoplasias Hepáticas Experimentais/urina , Equilíbrio Hidroeletrolítico , Redução de Peso , Animais , Carcinoma Hepatocelular/induzido quimicamente , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas Experimentais/induzido quimicamente , Neoplasias Hepáticas Experimentais/tratamento farmacológico , Masculino , Antagonistas de Receptores de Mineralocorticoides/farmacologia , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/metabolismo , Ratos , Ratos Endogâmicos WKY , Receptores de Mineralocorticoides/metabolismo , Espironolactona/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...